Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Representations of ideals in Polish groups and in Banach spaces

Barnabás Farkas¹

joint work (in progress) with

Piotr Borodulin-Nadzieja¹ and Grzegorz Plebanek¹

Hejnice 2013

¹Mathematical Institute, University of Wroclaw

Motiva	ation

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Motivation ••••• Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation: summable ideals

Definition

Let $h: \omega \to [0, \infty)$ be a sequence such that $\sum_{n \in \omega} h(n) = \infty$. Then the *summable ideal associated to* h is

$${\mathcal I}_h = \left\{ {oldsymbol A \subseteq \omega : \sum_{n \in {\mathcal A}} h(n) < \infty }
ight\}$$
 (a F_σ P-ideal).

Non complete groups

Polish-representability

Banach-representability

Motivation: summable ideals

Definition

Let $h : \omega \to [0, \infty)$ be a sequence such that $\sum_{n \in \omega} h(n) = \infty$. Then the *summable ideal associated to* h is

$${\mathcal I}_h = \left\{ {oldsymbol A \subseteq \omega : \sum_{n \in {\mathcal A}} h(n) < \infty }
ight\}$$
 (a F_σ P-ideal).

Observation

We can also allow that $h : \omega \to \mathbb{R}$ IF we use *unconditional (or u-)convergency*, that is, $A \in \mathcal{I}_h$ if the net

$$\sum h \upharpoonright A = \left\{ s_h(F) = \sum_{n \in F} h(n) : F \in [A]^{<\omega} \right\}$$
 is convergent.

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Generalized summable ideals

Definition

Let *G* be an Abelian topological group and $h : \omega \to G$ such that $\sum_{n \in \omega} h(n)$ is not u-convergent. Then the *generalized summable ideal associated to G and h* is

$$\mathcal{I}_h^G = \operatorname{ideal} \left\{ A \subseteq \omega : \sum h \restriction A \text{ is u-convergent} \right\}.$$

Banach-representability

Generalized summable ideals

Definition

Let *G* be an Abelian topological group and $h : \omega \to G$ such that $\sum_{n \in \omega} h(n)$ is not u-convergent. Then the *generalized summable ideal associated to G and h* is

$$\mathcal{I}_h^G = \mathrm{ideal}\Big\{A \subseteq \omega : \sum h \upharpoonright A \text{ is u-convergent}\Big\}.$$

Remarks

(1) $\{A \subseteq \omega : \sum h \upharpoonright A \text{ is convergent}\}$ is not necessarily an ideal.

(2) If *G* is complete (i.e. Cauchy nets are convergent), then $\mathcal{I}_h^G = \{A \subseteq \omega : \sum h \upharpoonright A \text{ is convergent}\}.$

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Generalized summable ideals

Definition

We say that an ideal \mathcal{J} on ω is *representable in* G if there is an $h: \omega \to G$ such that $\mathcal{J} = \mathcal{I}_h^G$. If **C** is a class of groups then \mathcal{J} is **C**-*representable* if it is representable in a $G \in \mathbf{C}$.

Banach-representability

Generalized summable ideals

Definition

We say that an ideal \mathcal{J} on ω is *representable in* G if there is an $h: \omega \to G$ such that $\mathcal{J} = \mathcal{I}_h^G$. If **C** is a class of groups then \mathcal{J} is **C**-*representable* if it is representable in a $G \in \mathbf{C}$.

Our research plan

Banach-representability

Generalized summable ideals

Definition

We say that an ideal \mathcal{J} on ω is *representable in* G if there is an $h: \omega \to G$ such that $\mathcal{J} = \mathcal{I}_h^G$. If **C** is a class of groups then \mathcal{J} is **C**-*representable* if it is representable in a $G \in \mathbf{C}$.

Our research plan

```
(a) \{\mathcal{J} : \mathcal{J} \text{ is Polish-representable}\}. Done!
```

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Generalized summable ideals

Definition

We say that an ideal \mathcal{J} on ω is *representable in G* if there is an $h: \omega \to G$ such that $\mathcal{J} = \mathcal{I}_h^G$. If **C** is a class of groups then \mathcal{J} is **C**-*representable* if it is representable in a $G \in \mathbf{C}$.

Our research plan

- (a) $\{\mathcal{J} : \mathcal{J} \text{ is Polish-representable}\}$. Done!
- (b) $\{\mathcal{J} : \mathcal{J} \text{ is Banach-representable}\}$. Done!

Banach-representability

Generalized summable ideals

Definition

We say that an ideal \mathcal{J} on ω is *representable in* G if there is an $h: \omega \to G$ such that $\mathcal{J} = \mathcal{I}_h^G$. If **C** is a class of groups then \mathcal{J} is **C**-*representable* if it is representable in a $G \in \mathbf{C}$.

Our research plan

- (a) $\{\mathcal{J} : \mathcal{J} \text{ is Polish-representable}\}$. Done!
- (b) $\{\mathcal{J} : \mathcal{J} \text{ is Banach-representable}\}$. Done!
- (c) $\{\mathcal{J} : \mathcal{J} \text{ is representable in } G\}$ for some fixed *G*.

Banach-representability

Generalized summable ideals

Definition

We say that an ideal \mathcal{J} on ω is *representable in G* if there is an $h : \omega \to G$ such that $\mathcal{J} = \mathcal{I}_h^G$. If **C** is a class of groups then \mathcal{J} is **C**-*representable* if it is representable in a $G \in \mathbf{C}$.

Our research plan

- (a) $\{\mathcal{J} : \mathcal{J} \text{ is Polish-representable}\}$. Done!
- (b) $\{\mathcal{J} : \mathcal{J} \text{ is Banach-representable}\}$. Done!
- (c) $\{\mathcal{J} : \mathcal{J} \text{ is representable in } G\}$ for some fixed G.
- (d) $\{G : \mathcal{J} \text{ is representable in } G\}$ for some fixed \mathcal{J} .

Motivation 000●00

Examples

Non complete groups

Polish-representability

Banach-representability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

The density zero ideal

$$\mathcal{Z} = \left\{ A \subseteq \omega : \frac{|A \cap n|}{n} \to 0 \right\} = \left\{ A \subseteq \omega : \frac{|A \cap [2^n, 2^{n+1})|}{2^n} \to 0 \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

Example

The density zero ideal

$$\mathcal{Z} = \left\{ A \subseteq \omega : \frac{|A \cap n|}{n} \to 0 \right\} = \left\{ A \subseteq \omega : \frac{|A \cap [2^n, 2^{n+1})|}{2^n} \to 0 \right\}$$

is representable in c_0 : Let h(0) = 0, and if $k \in [2^n, 2^{n+1})$ then let $h(k) = 2^{-n}e_k$ where $e_k = (\delta_{k,m})_{m \in \omega}$. In other words... Motivation 0000●0 Non complete groups

Polish-representability

Banach-representability

Examples

$$h(0) = (0, 0, 0, 0, 0, 0, ...)$$

$$h(1) = (0, 1, 0, 0, 0, 0, ...)$$

$$h(2) = (0, 0, 1/2, 0, 0, ...)$$

$$h(3) = (0, 0, 1/2, 0, 0, ...)$$

$$h(4) = (0, 0, 0, 1/4, 0, ...)$$

$$h(5) = (0, 0, 0, 1/4, 0, ...)$$

$$h(6) = (0, 0, 0, 1/4, 0, ...)$$

$$h(7) = (0, 0, 0, 1/4, 0, ...)$$

$$\vdots \vdots \vdots \vdots \vdots \vdots \vdots$$

Motivation 0000●0 Non complete groups

Polish-representability

Banach-representability

Examples

$$h(0) = (0, 0, 0, 0, 0, 0, ...)$$

$$h(1) = (0, 1, 0, 0, 0, 0, ...)$$

$$h(2) = (0, 0, 1/2, 0, 0, ...)$$

$$h(3) = (0, 0, 1/2, 0, 0, ...)$$

$$h(4) = (0, 0, 0, 1/4, 0, ...)$$

$$h(5) = (0, 0, 0, 1/4, 0, ...)$$

$$h(6) = (0, 0, 0, 1/4, 0, ...)$$

$$h(7) = (0, 0, 0, 1/4, 0, ...)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

If $A \subseteq \omega$ then $\sum h \upharpoonright A$ is *u*-convergent iff $\sum_{n \in A} h(n) = \left(0, \frac{|A \cap [2, 4)|}{2}, \frac{|A \cap [4, 8)|}{4}, \dots\right) \in c_0 \iff A \in \mathcal{Z}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Examples

Example

It is easy to see that if $(G_n)_{n \in \omega}$ is a sequence of discrete Abelian groups, then \mathcal{J} is representable in $\prod_{n \in \omega} G_n$ iff there is a sequence $(X_n)_{n \in \omega}$ in $[\omega]^{\omega}$ such that

$$\mathcal{J} = \{ \mathbf{A} \subseteq \omega : \forall \ \mathbf{n} \in \omega \ \mathbf{A} \cap \mathbf{X}_n \text{ is finite} \}.$$

Examples

Example

It is easy to see that if $(G_n)_{n \in \omega}$ is a sequence of discrete Abelian groups, then \mathcal{J} is representable in $\prod_{n \in \omega} G_n$ iff there is a sequence $(X_n)_{n \in \omega}$ in $[\omega]^{\omega}$ such that

$$\mathcal{J} = \{ \mathbf{A} \subseteq \omega : \forall \ \mathbf{n} \in \omega \ \mathbf{A} \cap \mathbf{X}_n \text{ is finite} \}.$$

For example,

 $\{\emptyset\} \otimes \operatorname{Fin} = \{A \subseteq \omega \times \omega : \forall n \in \omega \ \{m : (n, m) \in A\} \text{ is finite}\}$

has this property. It is a non tall $F_{\sigma\delta}$ P-ideal.

Non complete groups

Polish-representability

Banach-representability

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Representations in non complete groups

Proposition

Non complete groups

Polish-representability

Banach-representability

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Representations in non complete groups

Proposition

(i) Each ideal is representable in a normed space.

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Representations in non complete groups

Proposition

- (i) Each ideal is representable in a normed space.
- (ii) Each ideal is representable in a group *G* satisfying -g = g.

Banach-representability

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Representations in non complete groups

Proposition

- (i) Each ideal is representable in a normed space.
- (ii) Each ideal is representable in a group *G* satisfying -g = g.

Proof: (i) Let $X_{\mathcal{J}}$ be the linear subspace of ℓ_{∞} generated by

$$\left\{\sum_{n\in A}\frac{e_n}{n^2}:A\in\mathcal{J}\right\}$$

and let $h: \omega \to X_{\mathcal{J}}, h(n) = \frac{e_n}{n^2}$. Then $\mathcal{J} = \mathcal{I}_h^{X_{\mathcal{J}}}$.

Banach-representability

Representations in non complete groups

Proposition

- (i) Each ideal is representable in a normed space.
- (ii) Each ideal is representable in a group *G* satisfying -g = g.

Proof: (i) Let $X_{\mathcal{J}}$ be the linear subspace of ℓ_{∞} generated by

$$\left\{\sum_{n\in A}\frac{e_n}{n^2}:A\in\mathcal{J}\right\}$$

and let $h: \omega \to X_{\mathcal{J}}$, $h(n) = \frac{e_n}{n^2}$. Then $\mathcal{J} = \mathcal{I}_h^{X_{\mathcal{J}}}$. (ii): Consider \mathcal{J} as a subgroup of $(\mathcal{P}(\omega), \triangle)$, and let $h(n) = \{n\}$. Then $\mathcal{J} = \mathcal{I}_h^{\mathcal{J}}$.

Non complete groups

Polish-representability

Banach-representability

All ideals in a single normed spaces

Corollary

There is a normed space X with $\dim(X) = 2^{c}$ such that all ideals on ω are representable in X.

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

All ideals in a single normed spaces

Corollary

There is a normed space X with $\dim(X) = 2^{c}$ such that all ideals on ω are representable in X.

Question (maybe easy)

Does there exist a normed space X such that all ideals on ω are representable in X and dim(X) < 2^c?

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

All ideals in a single normed spaces

Corollary

There is a normed space X with $\dim(X) = 2^{c}$ such that all ideals on ω are representable in X.

Question (maybe easy)

Does there exist a normed space X such that all ideals on ω are representable in X and dim(X) < 2^c? (No if 2^c = c⁺ⁿ for some $n \in \omega$ because then $|X|^{\omega} = (\dim(X)^{<\omega} c)^{\omega} = \dim(X)^{\omega} < 2^{c}$.)

Non complete groups

Polish-representability •0000 Banach-representability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polish-representability

We will need Solecki's representation theorem.

Motivation 000000	Non complete groups	Polish-representability ●0000	Banach-representability	
Polish-representability				

We will need Solecki's representation theorem.

A function $\varphi: \mathcal{P}(\omega) \to [0,\infty]$ is a *submeasure* (on ω) if

- $\varphi(\emptyset) = 0;$
- if $X, Y \subseteq \omega$ then $\varphi(X) \leq \varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$;

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

•
$$\varphi(\{n\}) < \infty$$
 for $n \in \omega$.

Motivation 000000	Non complete groups	Polish-representability ●0000	Banach-representability	
Polish-representability				

We will need Solecki's representation theorem.

A function $\varphi: \mathcal{P}(\omega) \to [0,\infty]$ is a *submeasure* (on ω) if

- $\varphi(\emptyset) = 0;$
- if $X, Y \subseteq \omega$ then $\varphi(X) \leq \varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

•
$$\varphi(\{n\}) < \infty$$
 for $n \in \omega$.

 φ is *lower semicontinuous* (lsc, in short) if $\varphi(X) = \lim_{n \to \infty} \varphi(X \cap n)$ for each $X \subseteq \omega$.

Motivation 000000	Non complete groups	Polish-representability ●0000	Banach-representability		
Polish-representability					

We will need Solecki's representation theorem.

A function $\varphi: \mathcal{P}(\omega) \to [0,\infty]$ is a *submeasure* (on ω) if

- $\varphi(\emptyset) = 0;$
- if $X, Y \subseteq \omega$ then $\varphi(X) \leq \varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$;

•
$$\varphi(\{n\}) < \infty$$
 for $n \in \omega$.

 φ is *lower semicontinuous* (lsc, in short) if $\varphi(X) = \lim_{n \to \infty} \varphi(X \cap n)$ for each $X \subseteq \omega$.

If φ is an lsc submeasure then let

$$\operatorname{Exh}(\varphi) = \Big\{ A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0 \Big\}.$$

It is easy to see that if $Exh(\varphi) \neq \mathcal{P}(\omega)$, then it is an $F_{\sigma\delta}$ P-ideal.

(日) (日) (日) (日) (日) (日) (日)

Non complete groups

Polish-representability

Banach-representability

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Polish-representability

Theorem (Solecki)

Let \mathcal{J} be an ideal on ω . Then the followings are equivalent:

Non complete groups

Polish-representability

Banach-representability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polish-representability

Theorem (Solecki)

Let \mathcal{J} be an ideal on ω . Then the followings are equivalent:

(i) \mathcal{J} is an analytic *P*-ideal.

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Polish-representability

Theorem (Solecki)

Let \mathcal{J} be an ideal on ω . Then the followings are equivalent:

- (i) \mathcal{J} is an analytic *P*-ideal.
- (ii) $\mathcal{J} = \operatorname{Exh}(\varphi)$ for some (finite) lsc submeasure φ .

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Polish-representability

Theorem (Solecki)

Let \mathcal{J} be an ideal on ω . Then the followings are equivalent:

- (i) \mathcal{J} is an analytic *P*-ideal.
- (ii) $\mathcal{J} = \operatorname{Exh}(\varphi)$ for some (finite) lsc submeasure φ .
- (iii) There is a Polish group topology on \mathcal{J} (with respect to \triangle) such that the Borel structure of this topology coincides with the Borel structure inherited from $\mathcal{P}(\omega)$.

Theorem (Solecki)

Let \mathcal{J} be an ideal on ω . Then the followings are equivalent:

- (i) \mathcal{J} is an analytic *P*-ideal.
- (ii) $\mathcal{J} = \operatorname{Exh}(\varphi)$ for some (finite) lsc submeasure φ .
- (iii) There is a Polish group topology on \mathcal{J} (with respect to \triangle) such that the Borel structure of this topology coincides with the Borel structure inherited from $\mathcal{P}(\omega)$.

Remark

The Polish topology on $Exh(\varphi)$ is generated by the complete metric $d_{\varphi}(A, B) = \varphi(A \triangle B)$.

Non complete groups

Polish-representability

Banach-representability

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Polish-representability

Theorem

An ideal $\mathcal J$ is Polish-representable iff $\mathcal J$ is an analytic P-ideal.

Non complete groups

Polish-representability

Banach-representability

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Polish-representability

Theorem

An ideal \mathcal{J} is Polish-representable iff \mathcal{J} is an analytic P-ideal.

Proof of " \Leftarrow ": If φ is a lsc submeasure on ω , then $\operatorname{Exh}(\varphi) = \mathcal{I}_h^{\operatorname{Exh}(\varphi)}$ where $h : \omega \to \operatorname{Exh}(\varphi), h(n) = \{n\}.$

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Polish-representability

Theorem

An ideal \mathcal{J} is Polish-representable iff \mathcal{J} is an analytic P-ideal.

First proof of " \Rightarrow ": Assume that $\mathcal{J} = \mathcal{I}_h^G$ for some Polish *G* and *h*.

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Polish-representability

Theorem

An ideal \mathcal{J} is Polish-representable iff \mathcal{J} is an analytic P-ideal.

First proof of " \Rightarrow ": Assume that $\mathcal{J} = \mathcal{I}_h^G$ for some Polish *G* and *h*.

• The property " $\sum h \upharpoonright A$ is u-convergent" is clearly $F_{\sigma\delta}$.

Non complete groups

Polish-representability

Banach-representability

(日) (日) (日) (日) (日) (日) (日)

Polish-representability

Theorem

An ideal \mathcal{J} is Polish-representable iff \mathcal{J} is an analytic P-ideal.

First proof of " \Rightarrow ": Assume that $\mathcal{J} = \mathcal{I}_h^G$ for some Polish *G* and *h*.

- The property " $\sum h \upharpoonright A$ is u-convergent" is clearly $F_{\sigma\delta}$.
- Applying that we can fix a complete and *translation* invariant metric on G, it is easy to see that I^G_h is a P-ideal.

Non complete groups

Polish-representability

Banach-representability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Polish-representability

Theorem

An ideal \mathcal{J} is Polish-representable iff \mathcal{J} is an analytic P-ideal.

Second proof of " \Rightarrow ": Let *G*, *h*, *d* be as above. Then

$$\varphi(A) = \sup \left\{ d(0, s_h(F)) : \emptyset \neq F \in [A]^{<\omega} \right\}$$

is a lsc submeasure and it is easy to check that $\mathcal{I}_h^G = \operatorname{Exh}(\varphi)$.

Motivation 000000	Non complete groups	Polish-representability	Banach-representability ●000

Banach-representability

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$

$$\varphi(\mathbf{A}) = \sup \big\{ \mu(\mathbf{A}) : \mu \text{ is a measure on } \mathcal{P}(\omega) \text{ and } \mu \leq \varphi \big\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation 000000	Non complete groups	Polish-representability	Banach-representability ●000
Banach	-representability		

 $\varphi(\mathbf{A}) = \sup \{ \mu(\mathbf{A}) : \mu \text{ is a measure on } \mathcal{P}(\omega) \text{ and } \mu \leq \varphi \}.$

An analytic P-ideal \mathcal{J} is *non-pathological* iff $\mathcal{J} = \text{Exh}(\varphi)$ for some non-pathological lsc submeasure φ .

For example, summable ideals, density ideals, and $\{\emptyset\}\otimes Fin$ are non-pathological.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation	Non complete groups	Polish-representability	Banach-representability ●000
Banach	-representability		

 $\varphi(\mathbf{A}) = \sup \big\{ \mu(\mathbf{A}) : \mu \text{ is a measure on } \mathcal{P}(\omega) \text{ and } \mu \leq \varphi \big\}.$

An analytic P-ideal \mathcal{J} is **non-pathological** iff $\mathcal{J} = \text{Exh}(\varphi)$ for some non-pathological lsc submeasure φ .

For example, summable ideals, density ideals, and $\{\emptyset\} \otimes Fin$ are non-pathological.

Theorem

Let $\mathcal{J} = \operatorname{Exh}(\varphi)$ be an analytic P-ideal. Then the followings are equivalent:

Motivation	Non complete groups	Polish-representability	Banach-representability ●000
Banach	-representability		

 $\varphi(\mathbf{A}) = \sup \big\{ \mu(\mathbf{A}) : \mu \text{ is a measure on } \mathcal{P}(\omega) \text{ and } \mu \leq \varphi \big\}.$

An analytic P-ideal \mathcal{J} is *non-pathological* iff $\mathcal{J} = \text{Exh}(\varphi)$ for some non-pathological lsc submeasure φ .

For example, summable ideals, density ideals, and $\{\emptyset\} \otimes Fin$ are non-pathological.

Theorem

Let $\mathcal{J} = \operatorname{Exh}(\varphi)$ be an analytic P-ideal. Then the followings are equivalent:

(i) \mathcal{J} is non-pathological.

Motivation	Non complete groups	Polish-representability	Banach-representability ●000
Banach	-representability		

 $\varphi(\mathbf{A}) = \sup \big\{ \mu(\mathbf{A}) : \mu \text{ is a measure on } \mathcal{P}(\omega) \text{ and } \mu \leq \varphi \big\}.$

An analytic P-ideal \mathcal{J} is *non-pathological* iff $\mathcal{J} = \text{Exh}(\varphi)$ for some non-pathological lsc submeasure φ .

For example, summable ideals, density ideals, and $\{\emptyset\} \otimes Fin$ are non-pathological.

Theorem

Let $\mathcal{J} = \operatorname{Exh}(\varphi)$ be an analytic P-ideal. Then the followings are equivalent:

- (i) \mathcal{J} is non-pathological.
- (ii) \mathcal{J} is representable in ℓ_{∞} .

Motivation	Non complete groups	Polish-representability	Banach-representability ●000
Banach	-representability		

 $\varphi(\mathbf{A}) = \sup \big\{ \mu(\mathbf{A}) : \mu \text{ is a measure on } \mathcal{P}(\omega) \text{ and } \mu \leq \varphi \big\}.$

An analytic P-ideal \mathcal{J} is *non-pathological* iff $\mathcal{J} = \text{Exh}(\varphi)$ for some non-pathological lsc submeasure φ .

For example, summable ideals, density ideals, and $\{\emptyset\}\otimes Fin$ are non-pathological.

Theorem

Let $\mathcal{J} = \operatorname{Exh}(\varphi)$ be an analytic P-ideal. Then the followings are equivalent:

- (i) \mathcal{J} is non-pathological.
- (ii) \mathcal{J} is representable in ℓ_{∞} .
- (iii) \mathcal{J} is Banach-representable.

Polish-representability

Banach-representability

${\mathcal J}$ is non-pathological $\Rightarrow {\mathcal J}$ is representable in ℓ_∞

Proof: Fix a sequence $(\mu_k)_{k \in \omega}$ of measures on ω such that

$$arphi({m {F}}) = \sup ig\{ \mu_{m k}({m {F}}): {m k} \in \omega ig\} \ \ ext{for every} \ \ {m F} \in [\omega]^{<\omega},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Polish-representability

Banach-representability

${\mathcal J}$ is non-pathological $\Rightarrow {\mathcal J}$ is representable in ℓ_∞

Proof: Fix a sequence $(\mu_k)_{k \in \omega}$ of measures on ω such that

$$arphi({m F}) = \sup ig\{ \mu_k({m F}) : k \in \omega ig\} \ \ ext{for every} \ \ {m F} \in [\omega]^{<\omega},$$

and let $h: \omega \to \ell_\infty$ be defined by

$$h(0) = (\mu_0(\{0\}), \mu_1(\{0\}), \mu_2(\{0\}), \dots)$$

$$h(1) = (\mu_0(\{1\}), \mu_1(\{1\}), \mu_2(\{1\}), \dots)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$h(n) = (\mu_0(\{n\}), \mu_1(\{n\}), \mu_2(\{n\}), \dots)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

Non complete groups

Polish-representability

Banach-representability

${\mathcal J}$ is non-pathological $\Rightarrow {\mathcal J}$ is representable in ℓ_∞

Proof: Fix a sequence $(\mu_k)_{k \in \omega}$ of measures on ω such that

$$arphi({m F}) = \sup ig\{ \mu_k({m F}) : k \in \omega ig\} \ \ ext{for every} \ \ {m F} \in [\omega]^{<\omega},$$

and let $h:\omega \to \ell_\infty$ be defined by

$$h(0) = (\mu_0(\{0\}), \mu_1(\{0\}), \mu_2(\{0\}), \dots)$$

$$h(1) = (\mu_0(\{1\}), \mu_1(\{1\}), \mu_2(\{1\}), \dots)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$h(n) = (\mu_0(\{n\}), \mu_1(\{n\}), \mu_2(\{n\}), \dots)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

Then $||s_h(F)|| = \varphi(F)$ for every $F \in [\omega]^{<\omega}$ and so $\operatorname{Exh}(\varphi) = \mathcal{I}_h^{\ell_{\infty}}$.

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $\operatorname{Exh}(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $\operatorname{Exh}(\varphi) = \operatorname{Exh}(\psi)$.

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $\operatorname{Exh}(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $\operatorname{Exh}(\varphi) = \operatorname{Exh}(\psi)$. Let the submeasure $\widehat{\varphi}$ be defined by

$$\widehat{arphi}({m{\mathsf{A}}}) = \sup\left\{ \|{m{s}}_{{m{h}}}({m{\mathsf{A}}})\| : \emptyset
eq {m{F}} \in [{m{A}}]^{<\omega}
ight\},$$

We know that $\operatorname{Exh}(\widehat{\varphi}) = \mathcal{I}_h^X = \operatorname{Exh}(\varphi)$.

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $\operatorname{Exh}(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $\operatorname{Exh}(\varphi) = \operatorname{Exh}(\psi)$. Let the submeasure $\widehat{\varphi}$ be defined by

$$\widehat{arphi}({m{A}}) = \sup ig \{ \| {m{s}}_{{m{h}}}({m{A}}) \| : \emptyset
eq {m{F}} \in [{m{A}}]^{<\omega} ig \}.$$

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $Exh(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $Exh(\varphi) = Exh(\psi)$. Let the submeasure $\widehat{\varphi}$ be defined by

$$\widehat{arphi}({oldsymbol A}) = \sup ig \{ \| {oldsymbol s}_{h}({oldsymbol A}) \| : \emptyset
eq {oldsymbol F} \in [{oldsymbol A}]^{<\omega} ig \}.$$

We know that $\operatorname{Exh}(\widehat{\varphi}) = \mathcal{I}_h^X = \operatorname{Exh}(\varphi)$. How to construct ψ ? - $a \in [\omega]^{<\omega} \rightsquigarrow a' \subseteq a$ such that $\widehat{\varphi}(a) = ||s_h(a')||$.

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $Exh(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $Exh(\varphi) = Exh(\psi)$. Let the submeasure $\widehat{\varphi}$ be defined by

$$\widehat{arphi}({oldsymbol A}) = \supig\{\|{oldsymbol s}_h({oldsymbol A})\|: \emptyset
eq {oldsymbol F} \in [{oldsymbol A}]^{<\omega}ig\}.$$

- $-a \in [\omega]^{<\omega} \rightsquigarrow a' \subseteq a$ such that $\widehat{\varphi}(a) = \|s_h(a')\|$.
- Fix an $x_a^* \in X^*$ with $||x_a^*|| = 1$ and $x_a^*(s_h(a')) = ||s_h(a')||$.

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $Exh(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $Exh(\varphi) = Exh(\psi)$. Let the submeasure $\widehat{\varphi}$ be defined by

$$\widehat{arphi}({m{A}}) = \sup \left\{ \| {m{s}}_{{m{h}}}({m{A}}) \| : \emptyset
eq {m{F}} \in [{m{A}}]^{<\omega}
ight\}.$$

- $a \in [\omega]^{<\omega} \rightsquigarrow a' \subseteq a \text{ such that } \widehat{\varphi}(a) = \|s_h(a')\|.$
- Fix an $x_a^* \in X^*$ with $||x_a^*|| = 1$ and $x_a^*(s_h(a')) = ||s_h(a')||$.
- − Let $\nu_a(b) = x_a^*(s_h(a' \cap b))$, it is a signed measure.

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $Exh(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $Exh(\varphi) = Exh(\psi)$. Let the submeasure $\widehat{\varphi}$ be defined by

$$\widehat{arphi}({m{A}}) = \sup \left\{ \| {m{s}}_{{m{h}}}({m{A}}) \| : \emptyset
eq {m{F}} \in [{m{A}}]^{<\omega}
ight\}.$$

- $a \in [\omega]^{<\omega} \rightsquigarrow a' \subseteq a \text{ such that } \widehat{\varphi}(a) = \|s_h(a')\|.$
- Fix an $x_a^* \in X^*$ with $||x_a^*|| = 1$ and $x_a^*(s_h(a')) = ||s_h(a')||$.
- − Let $\nu_a(b) = x_a^*(s_h(a' \cap b))$, it is a signed measure.
- Let $\mu_a = \nu_a^+ + \nu_a^-$ (in other words $\mu_a(\{n\}) = |\nu_a(\{n\})|$).

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $Exh(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $Exh(\varphi) = Exh(\psi)$. Let the submeasure $\widehat{\varphi}$ be defined by

$$\widehat{arphi}(oldsymbol{A}) = \sup \left\{ \|oldsymbol{s}_h(oldsymbol{A})\| : \emptyset
eq oldsymbol{F} \in [oldsymbol{A}]^{<\omega}
ight\}.$$

- $a \in [\omega]^{<\omega} \rightsquigarrow a' \subseteq a \text{ such that } \widehat{\varphi}(a) = \|s_h(a')\|.$
- Fix an $x_a^* \in X^*$ with $||x_a^*|| = 1$ and $x_a^*(s_h(a')) = ||s_h(a')||$.
- − Let $\nu_a(b) = x_a^*(s_h(a' \cap b))$, it is a signed measure.
- Let $\mu_a = \nu_a^+ + \nu_a^-$ (in other words $\mu_a(\{n\}) = |\nu_a(\{n\})|$).
- Finally let $\psi = \sup \{ \mu_{a} : a \in [\omega]^{<\omega} \}.$

Non complete groups

Polish-representability

Banach-representability

\mathcal{J} is Banach-representable $\Rightarrow \mathcal{J}$ is non-pathological

Proof: Assume that $Exh(\varphi) = \mathcal{I}_h^X$ for some Banach space X and $h: \omega \to X$. We will construct a non-pathological ψ such that $Exh(\varphi) = Exh(\psi)$. Let the submeasure $\widehat{\varphi}$ be defined by

$$\widehat{arphi}(oldsymbol{A}) = \sup \left\{ \|oldsymbol{s}_h(oldsymbol{A})\| : \emptyset
eq oldsymbol{F} \in [oldsymbol{A}]^{<\omega}
ight\}.$$

We know that $\operatorname{Exh}(\widehat{\varphi}) = \mathcal{I}_h^X = \operatorname{Exh}(\varphi)$. How to construct ψ ?

- $a \in [\omega]^{<\omega} \rightsquigarrow a' \subseteq a \text{ such that } \widehat{\varphi}(a) = \|s_h(a')\|.$
- Fix an $x_a^* \in X^*$ with $||x_a^*|| = 1$ and $x_a^*(s_h(a')) = ||s_h(a')||$.
- − Let $\nu_a(b) = x_a^*(s_h(a' \cap b))$, it is a signed measure.
- Let $\mu_a = \nu_a^+ + \nu_a^-$ (in other words $\mu_a(\{n\}) = |\nu_a(\{n\})|$).
- Finally let $\psi = \sup \{ \mu_{a} : a \in [\omega]^{<\omega} \}.$

Then $\widehat{\varphi} \leq \psi \leq 2\widehat{\varphi}$ and so $\operatorname{Exh}(\psi) = \operatorname{Exh}(\widehat{\varphi}) = \operatorname{Exh}(\varphi)$.

Non complete groups

Polish-representability

Banach-representability

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

My favorite question...

Non complete groups

Polish-representability

Banach-representability

My favorite question...

Question

Which ideals are representable in c_0 ?

Non complete groups

Polish-representability

Banach-representability

Thank you!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?