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Motivation: summable ideals

Definition
Let h : ω → [0,∞) be a sequence such that

∑
n∈ω h(n) =∞.

Then the summable ideal associated to h is

Ih =

{
A ⊆ ω :

∑
n∈A

h(n) <∞
}

(a Fσ P-ideal).

Observation
We can also allow that h : ω → R IF we use unconditional (or
u-)convergency, that is, A ∈ Ih if the net∑

h �A =

{
sh(F ) =

∑
n∈F

h(n) : F ∈ [A]<ω
}

is convergent.



Motivation Non complete groups Polish-representability Banach-representability

Motivation: summable ideals

Definition
Let h : ω → [0,∞) be a sequence such that

∑
n∈ω h(n) =∞.

Then the summable ideal associated to h is

Ih =

{
A ⊆ ω :

∑
n∈A

h(n) <∞
}

(a Fσ P-ideal).

Observation
We can also allow that h : ω → R IF we use unconditional (or
u-)convergency, that is, A ∈ Ih if the net∑

h �A =

{
sh(F ) =

∑
n∈F

h(n) : F ∈ [A]<ω
}

is convergent.



Motivation Non complete groups Polish-representability Banach-representability

Generalized summable ideals

Definition
Let G be an Abelian topological group and h : ω → G such that∑

n∈ω h(n) is not u-convergent. Then the generalized
summable ideal associated to G and h is

IG
h = ideal

{
A ⊆ ω :

∑
h �A is u-convergent

}
.

Remarks
(1) {A ⊆ ω :

∑
h �A is convergent} is not necessarily an ideal.

(2) If G is complete (i.e. Cauchy nets are convergent), then
IG

h = {A ⊆ ω :
∑

h �A is convergent}.
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Generalized summable ideals

Definition
We say that an ideal J on ω is representable in G if there is
an h : ω → G such that J = IG

h . If C is a class of groups then
J is C-representable if it is representable in a G ∈ C.

Our research plan
In general, we want to characterize the following classes:
(a) {J : J is Polish-representable}. Done!
(b) {J : J is Banach-representable}. Done!
(c) {J : J is representable in G} for some fixed G.
(d) {G : J is representable in G} for some fixed J .
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Examples

Example
The density zero ideal

Z =

{
A ⊆ ω :

|A ∩ n|
n

→ 0
}

=

{
A ⊆ ω :

|A ∩ [2n,2n+1)|
2n → 0

}

is representable in c0: Let h(0) = 0, and if k ∈ [2n,2n+1) then
let h(k) = 2−nek where ek = (δk ,m)m∈ω.
In other words. . .
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Examples

h(0) =(0,0, 0 , 0 , 0 , . . . )

h(1) =(0,1, 0 , 0 , 0 , . . . )

h(2) =(0,0,1/2, 0 , 0 , . . . )

h(3) =(0,0,1/2, 0 , 0 , . . . )

h(4) =(0,0, 0 ,1/4, 0 , . . . )

h(5) =(0,0, 0 ,1/4, 0 , . . . )

h(6) =(0,0, 0 ,1/4, 0 , . . . )

h(7) =(0,0, 0 ,1/4, 0 , . . . )

...
...

...
...

...
...

If A ⊆ ω then
∑

h �A is u-convergent iff∑
n∈A

h(n) =
(

0,
|A ∩ [2,4)|

2
,
|A ∩ [4,8)|

4
, . . .

)
∈ c0 ⇐⇒ A ∈ Z.
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Examples

Example

It is easy to see that if (Gn)n∈ω is a sequence of discrete
Abelian groups, then J is representable in

∏
n∈ω Gn iff there is

a sequence (Xn)n∈ω in [ω]ω such that

J =
{

A ⊆ ω : ∀ n ∈ ω A ∩ Xn is finite
}
.

For example,

{∅} ⊗ Fin =
{

A ⊆ ω × ω : ∀ n ∈ ω {m : (n,m) ∈ A} is finite
}

has this property. It is a non tall Fσδ P-ideal.
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Representations in non complete groups

Proposition

(i) Each ideal is representable in a normed space.
(ii) Each ideal is representable in a group G satisfying −g = g.

Proof: (i) Let XJ be the linear subspace of `∞ generated by{∑
n∈A

en

n2 : A ∈ J
}

and let h : ω → XJ , h(n) = en
n2 . Then J = IXJ

h .
(ii): Consider J as a subgroup of (P(ω),4), and let h(n) = {n}.
Then J = IJh .



Motivation Non complete groups Polish-representability Banach-representability

Representations in non complete groups

Proposition
(i) Each ideal is representable in a normed space.

(ii) Each ideal is representable in a group G satisfying −g = g.

Proof: (i) Let XJ be the linear subspace of `∞ generated by{∑
n∈A

en

n2 : A ∈ J
}

and let h : ω → XJ , h(n) = en
n2 . Then J = IXJ

h .
(ii): Consider J as a subgroup of (P(ω),4), and let h(n) = {n}.
Then J = IJh .



Motivation Non complete groups Polish-representability Banach-representability

Representations in non complete groups

Proposition
(i) Each ideal is representable in a normed space.
(ii) Each ideal is representable in a group G satisfying −g = g.

Proof: (i) Let XJ be the linear subspace of `∞ generated by{∑
n∈A

en

n2 : A ∈ J
}

and let h : ω → XJ , h(n) = en
n2 . Then J = IXJ

h .
(ii): Consider J as a subgroup of (P(ω),4), and let h(n) = {n}.
Then J = IJh .



Motivation Non complete groups Polish-representability Banach-representability

Representations in non complete groups

Proposition
(i) Each ideal is representable in a normed space.
(ii) Each ideal is representable in a group G satisfying −g = g.

Proof: (i) Let XJ be the linear subspace of `∞ generated by{∑
n∈A

en

n2 : A ∈ J
}

and let h : ω → XJ , h(n) = en
n2 . Then J = IXJ

h .

(ii): Consider J as a subgroup of (P(ω),4), and let h(n) = {n}.
Then J = IJh .



Motivation Non complete groups Polish-representability Banach-representability

Representations in non complete groups

Proposition
(i) Each ideal is representable in a normed space.
(ii) Each ideal is representable in a group G satisfying −g = g.

Proof: (i) Let XJ be the linear subspace of `∞ generated by{∑
n∈A

en

n2 : A ∈ J
}

and let h : ω → XJ , h(n) = en
n2 . Then J = IXJ

h .
(ii): Consider J as a subgroup of (P(ω),4), and let h(n) = {n}.
Then J = IJh .



Motivation Non complete groups Polish-representability Banach-representability

All ideals in a single normed spaces

Corollary

There is a normed space X with dim(X ) = 2c such that all
ideals on ω are representable in X .

Question (maybe easy)
Does there exist a normed space X such that all ideals on ω are
representable in X and dim(X ) < 2c? (No if 2c = c+n for some
n ∈ ω because then |X |ω = (dim(X )<ωc)ω = dim(X )ω < 2c.)
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Polish-representability

We will need Solecki’s representation theorem.

A function ϕ : P(ω)→ [0,∞] is a submeasure (on ω) if
ϕ(∅) = 0;
if X ,Y ⊆ ω then ϕ(X ) ≤ ϕ(X ∪ Y ) ≤ ϕ(X ) + ϕ(Y );
ϕ({n}) <∞ for n ∈ ω.

ϕ is lower semicontinuous (lsc, in short) if
ϕ(X ) = limn→∞ ϕ(X ∩ n) for each X ⊆ ω.

If ϕ is an lsc submeasure then let

Exh(ϕ) =
{

A ⊆ ω : lim
n→∞

ϕ(A \ n) = 0
}
.

It is easy to see that if Exh(ϕ) 6= P(ω), then it is an Fσδ P-ideal.
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Polish-representability

Theorem (Solecki)
Let J be an ideal on ω. Then the followings are equivalent:

(i) J is an analytic P-ideal.
(ii) J = Exh(ϕ) for some (finite) lsc submeasure ϕ.
(iii) There is a Polish group topology on J (with respect to 4)

such that the Borel structure of this topology coincides with
the Borel structure inherited from P(ω).

Remark
The Polish topology on Exh(ϕ) is generated by the complete
metric dϕ(A,B) = ϕ(A4B).
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Polish-representability

Theorem
An ideal J is Polish-representable iff J is an analytic P-ideal.

Proof of “⇐”: If ϕ is a lsc submeasure on ω, then

Exh(ϕ) = IExh(ϕ)
h where h : ω → Exh(ϕ), h(n) = {n}.
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Polish-representability

Theorem
An ideal J is Polish-representable iff J is an analytic P-ideal.

First proof of “⇒”: Assume that J = IG
h for some Polish G and

h.

The property “
∑

h �A is u-convergent” is clearly Fσδ.
Applying that we can fix a complete and translation
invariant metric on G, it is easy to see that IG

h is a P-ideal.
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Polish-representability

Theorem
An ideal J is Polish-representable iff J is an analytic P-ideal.

Second proof of “⇒”: Let G,h,d be as above. Then

ϕ(A) = sup
{

d
(
0, sh(F )

)
: ∅ 6= F ∈ [A]<ω

}
is a lsc submeasure and it is easy to check that IG

h = Exh(ϕ).
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Banach-representability

A submeasure ϕ is non-pathological if for every A ⊆ ω

ϕ(A) = sup
{
µ(A) : µ is a measure on P(ω) and µ ≤ ϕ

}
.

An analytic P-ideal J is non-pathological iff J = Exh(ϕ) for
some non-pathological lsc submeasure ϕ.
For example, summable ideals, density ideals, and {∅} ⊗ Fin
are non-pathological.

Theorem
Let J = Exh(ϕ) be an analytic P-ideal. Then the followings are
equivalent:

(i) J is non-pathological.
(ii) J is representable in `∞.
(iii) J is Banach-representable.
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ϕ(A) = sup
{
µ(A) : µ is a measure on P(ω) and µ ≤ ϕ

}
.

An analytic P-ideal J is non-pathological iff J = Exh(ϕ) for
some non-pathological lsc submeasure ϕ.
For example, summable ideals, density ideals, and {∅} ⊗ Fin
are non-pathological.

Theorem
Let J = Exh(ϕ) be an analytic P-ideal. Then the followings are
equivalent:

(i) J is non-pathological.
(ii) J is representable in `∞.
(iii) J is Banach-representable.
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J is non-pathological⇒ J is representable in `∞

Proof: Fix a sequence (µk )k∈ω of measures on ω such that

ϕ(F ) = sup
{
µk (F ) : k ∈ ω

}
for every F ∈ [ω]<ω,

and let h : ω → `∞ be defined by

h(0) =
(
µ0({0}), µ1({0}), µ2({0}), . . .

)
h(1) =

(
µ0({1}), µ1({1}), µ2({1}), . . .

)
...

...
...

...
...

...
h(n) =

(
µ0({n}), µ1({n}), µ2({n}), . . .

)
...

...
...

...
...

...

Then ‖sh(F )‖ = ϕ(F ) for every F ∈ [ω]<ω and so Exh(ϕ) = I`∞h .
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J is Banach-representable⇒ J is non-pathological

Proof: Assume that Exh(ϕ) = IX
h for some Banach space X

and h : ω → X . We will construct a non-pathological ψ such
that Exh(ϕ) = Exh(ψ).

Let the submeasure ϕ̂ be defined by

ϕ̂(A) = sup
{
‖sh(A)‖ : ∅ 6= F ∈ [A]<ω

}
.

We know that Exh(ϕ̂) = IX
h = Exh(ϕ). How to construct ψ?

– a ∈ [ω]<ω ; a′ ⊆ a such that ϕ̂(a) = ‖sh(a′)‖.
– Fix an x∗a ∈ X ∗ with ‖x∗a‖ = 1 and x∗a

(
sh(a′)

)
= ‖sh(a′)‖.

– Let νa(b) = x∗a
(
sh(a′ ∩ b)

)
, it is a signed measure.

– Let µa = ν+a + ν−a (in other words µa({n}) = |νa({n})|).
– Finally let ψ = sup

{
µa : a ∈ [ω]<ω

}
.

Then ϕ̂ ≤ ψ ≤ 2ϕ̂ and so Exh(ψ) = Exh(ϕ̂) = Exh(ϕ).
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My favorite question. . .

Question
Which ideals are representable in c0?
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Thank you!
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